首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   6篇
  2021年   1篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2007年   1篇
  2006年   3篇
  2004年   6篇
  2003年   1篇
  2002年   5篇
  2001年   4篇
  2000年   5篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   10篇
  1990年   7篇
  1989年   8篇
  1988年   11篇
  1987年   9篇
  1986年   6篇
  1985年   7篇
  1984年   3篇
  1983年   3篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1977年   2篇
  1976年   4篇
  1975年   5篇
  1974年   6篇
  1973年   4篇
  1972年   6篇
  1971年   2篇
  1970年   4篇
  1969年   2篇
  1968年   3篇
  1967年   1篇
  1966年   1篇
  1965年   3篇
  1938年   1篇
  1931年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
81.
Cathepsin D from porcine spleen contained mannose (3.3%), glucosamine (1.4%), and mannose 6-phosphate (0.08%). Essentially all of the oligosaccharides of cathepsin D could be released by endo-β-N-acetylglucosaminidase H, pointing to oligomajmoside types of structures. Three neutral oligosaccharide fractions, containing 5, 6, and 7 mannose residues, respectively, were isolated by gel permeation chromatography on Bio-Gel P-2. Studies using exoglycosidase digestions and 500-MHz 1H NMR spectroscopy revealed that their structures are [Manα1 → 2]0 or 1Manα1 → 6[Manα1 → 3]Manα1 → 6[(Manα1 → 2)0 or 1Manα1 → 3]Manβ1 → 4GlcNAcβ1 → 4 GlcNAc. These structures are identical to what have recently been proposed by Takahashi et al. for the major oligosaccharide units of cathepsin D from the same source (T. Takahashi P.G. Schimidt, and J. Tang (1983)J. Biol. Chem.258, 2819–2930), except for the occurrence of two isomeric oligosaccharides containing six mannoses. Only a part (3.4%) of the oligosaccharides were acidic, containing phosphates in monoester linkage. The phosphorylated oligosaccharides also consisted of oligomannoside-type chains which were analogous to, but more heterogeneous in size than the neutral oligosaccharides. Cathepsin D was bound to a mannose- and N-acetylglucosamine-specific lectin (mannan-binding protein) isolated from rabbit liver with the Ki value of 5.4 × 10?6m.  相似文献   
82.
83.
84.
85.
Ohne Zusammenfassung  相似文献   
86.
87.
88.
Serum mannan-binding protein (MBP), a lectin specific for mannose and N-acetylglucosamine, was revealed to activate the complement system as measured by passive hemolysis using sheep erythrocytes coated with yeast mannan. In contrast, rat liver MBP, which shares many properties in common with serum MBP, could not activate complement at all. The activation by serum MBP was inhibited effectively by the presence of haptenic sugars and dependent absolutely upon the presence of C4, indicating that the activation is initiated by the sugar binding activity of MBP and proceeds through the classical pathway. The 25 NH2-terminal amino acid sequence of rat serum MBP determined in this study was completely matched with that of MBP-A deduced from cDNA sequence by Drickamer et al. (Drickamer, K., Dordal, M. S., and Reynolds, L. (1986) J. Biol. Chem. 261, 6878-6887), revealing that MBP-A is in fact identical with serum MBP. On the basis of the knowledge of primary structures and physicochemical properties of rat serum and liver MBPs, a possible mechanism of the complement activation by serum MBP is discussed with reference to close similarity in the gross structures of serum MBP and C1q.  相似文献   
89.
The carbohydrate portions of beta-galactosidase from Aspergillus oryzae were found to be composed of two types of sugar chains. They were released equally well with endo-beta-N-acetylglucosaminidase H, but were distinct in their chain length. The long sugar chains (fraction I), corresponding to 4% of the total carbohydrate chains, were composed of galactomannan-type oligosaccharides, which consisted of mannose, galactose, glucose, and glucosamine in the molar ratios of 30.0, 16.4, 1.4, and 2.1 per mol of aspartic acid, respectively. The short sugar chains (fraction II), corresponding to 96% of the total carbohydrate chains, consisted of mannose, galactose, glucose, and glucosamine in the molar ratios of 9.4, 0.6, 0.3, and 1.7 per mol of aspartic acid, respectively. Both types of sugar chains were fractionated into neutral and acidic subfractions. The neutral subfraction of fraction I (I-N), corresponding to 1% of the total carbohydrate chains, was very heterogeneous in length and was resistant to digestion with alpha-mannosidase and beta-galactosidase. The neutral subfraction of fraction II (II-N), corresponding to 91% of the total carbohydrate, was composed of a mixture of oligosaccharides with oligomanneoside chains (Mann GlcNAcol). The major components were similar to high mannose-type oligosaccharides of mammalian origin in their composition and size (n = 5-9). However, digestion of II-N with alpha 1,2-mannosidase produced considerable amounts of Man6GlcNAcol, an unusual product in the case of high mannose-type oligosaccharides of mammalian origin, in addition to the common one, Man5GlcNAcol.  相似文献   
90.
cDNA clones encoding rat liver mannan-binding protein (MBP), a lectin specific for mannose and N-acetylglucosamine, were isolated from a rat liver cDNA library carried in lambda gt 11, by screening with affinity purified polyclonal rabbit anti-rat liver MBP antibodies. The nucleotide sequence of the cDNA determined by the dideoxy method revealed the complete amino acid sequence of the MBP (226 residues). The NH2-terminal residue of the MBP, glutamic acid, was preceded by a predominantly hydrophobic stretch of 18 amino acids, which was assumed to be a signal peptide. Near the NH2-terminal, there was a collagen-like domain, which consisted of 19 repeats of the sequence Gly-X-Y. Here, X and Y were frequently proline and lysine. Three proline and lysine residues were hydroxylated, and one of the latter appeared to link to galactose. Computer analysis of several lectins for sequence homology suggested that the COOH-terminal quarter of the MBP is associated with the calcium binding as well as carbohydrate recognition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号